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Abstract
The crystalline state of a single polyethylene chain with N = 500 monomers
is investigated by extensive MD simulations. The polymer is folded in a well
defined lamella with ten stems of approximately equal length, arranged into a
regular, hexagonal pattern. The study of the microscopic organization of the
lamella, which is in an equilibrium condition, evidences that the two caps are
rather flat, i.e. the loops connecting the stems are short. An analytic model
of the global minimum of the free energy, based on the assumption that the
entropic contribution is mainly due to the combinatorics of the stems and loops
and neglecting any conformational contribution, is presented. It provides for
the first time a quantitative explanation of the MD results on the equilibrium
geometry of single-chain crystals.

1. Introduction

The crystalline state of polymers is very different from that of other materials because of
the need to arrange in an ordered way a large number of monomers linked to each other
sequentially. This results in a wide range of possible hierarchical morphologies where the
basic unit is the lamella, which is a few hundred ångströms thick [1–8]. The backbone of a
single polymer chain, which is several thousand ångströms long, is folded inside the lamella
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to form the so-called stems; these are perpendicular to the basal surfaces of the lamella where
the foldings are localized [4–6].

Different processes in polymer crystallization are known [1, 2, 4]. Here, we are
interested in the primary homogeneous nucleation of single-molecule crystals in dilute
solutions. The primary nucleation of polymers and oligomers has been investigated in the
melt both by experiments [9, 10] and simulations [11]. Nonetheless, very few groups have
challenged the rather problematic and related issue of the preparation of single-molecule single
crystals [12, 13]. Understanding if the primary nucleation is kinetically or thermodynamically
controlled is non-trivial. The difficult characterization of the primary nucleation regime in
dilute solutions has motivated several simulations [14–22]. For relatively short chains, the
primary nucleation of single-molecule n-alkanes with a number of monomers N = n � 300
was found to end up in the global minimum of the free-energy landscape (FEL), i.e. in
thermodynamic equilibrium, at a quench depth �T ≡ Tm − T ∼ 0.2Tm, where Tm is the
melting temperature [14, 15]. However, the eventual kinetic arrest of the nucleation in one
state during the primary nucleation of longer single molecules cannot be excluded due to the
increasing number of entanglements and, consequently, larger energy barriers.

The present paper reports on a simulation, carried out by molecular-dynamics (MD)
algorithms, of the primary nucleation of single-molecule n-alkanes with N = 500. Similar
lengths are more characteristic of polyethylene (N � 200) than paraffin waxes (17 � N �
40) [23]. The goal is to characterize the final crystalline state, which was found to correspond
to the global minimum of the FEL [24]. The sharpness of the loops connecting different stems,
a feature which has been known for a long time [3], is evidenced. Motivated by this finding,
a simple analytic model of the FEL global minimum is presented.

2. Numerical methods

The behaviour of a single polyethylene (PE) chain with N = 500 monomers in solution has
been studied by means of a united-atom model. The chain is described as a sequence of
beads, where each bead represents a single methylene CH2 group. No distinction is made
between internal methylene CH2 groups and terminal methyl CH3 groups in order to obtain a
slight improvement in efficiency [16]. For long chains this approximation is fair. The local
interactions shaping the chain are defined by the potentials

Ubond(r) = kr (r − r0)
2 (1)

Uangle(θ) = kθ (cos θ − cos θ0)
2 (2)

Utorsion(φ) = k1(1 − cos φ) + k2(1 − cos 2φ) + k3(1 − cos 3φ) (3)

Ubond(r) is a harmonic spring potential defined for every pair of adjacent beads, r being their
distance and r0 the equilibrium bond length. Uangle(θ) is defined for every triplet of adjacent
beads, θ being the angle between the corresponding bonds and θ0 its equilibrium value. Finally,
Utorsion(φ) is defined for every quadruplet of adjacent beads and φ is the dihedral angle between
the planes defined by the corresponding three adjacent bonds. Pairs of beads not interacting
by any of the preceding potentials interact by means of a Lennard-Jones potential

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
(4)

with a cut-off radius rcut = 2.5σ . The set of parameters of the above force fields are taken
from [25] (see table 1). The corresponding time and temperature units are given by t∗ = 2.21
ps and T ∗ = 56.3 K. All the results will be presented in terms of reduced units. The solvent
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Table 1. Parameters of the force field.

Value

Parameter Reduced units SI units

ε 1 0.112 kcal mol−1

σ 1 4.04 Å
m 1 14.03 g mol−1

� 1 0.455 s−1 mol−1

kr 51 005 350 kcal mol−1 Å−2

r0 0.38 1.53 Å
kθ 535.71 60 kcal mol−1

θ0 109◦ 109◦
k1 26.96 3.02 kcal mol−1

k2 −5 −0.56 kcal mol−1

k3 23.04 2.58 kcal mol−1

is mimicked by suitable Langevin dynamics:

r̈i = −∇iU − �ṙi − Wi (5)

where ri denotes the position vector of the i th bead, ∇i U is the sum of the internal forces
acting on it, �ṙi is the frictional force and Wi is a Gaussian noise which sets the temperature
via the proper fluctuation–dissipation theorem:

〈Wi (t) · W j (t
′)〉 = 6�kbT δi jδ(t − t ′). (6)

Equation (5) is integrated by means of the velocity Verlet algorithm with time step
�t = 0.001 [26]. The runs are performed according to the following protocol: 17 random
chain conformations are initially equilibrated at Teq = 15 for at least ten times the time needed
for the self-correlation function of the end-to-end vector to vanish. The equilibrated chain does
not exhibit any local orientational order. The final temperature Tf = 9 is reached via different
thermal histories: (i) instantaneous direct quenches Teq → Tf , (ii) instantaneous quenches
with intermediate annealing at Tann, Teq → Tann → Tf . Annealing times were 3 × 104 at
Tann = 9, 10 and 6 ×104 at Tann = 11. The total number of direct quenches (17) and quenches
with intermediate annealing was 28. Having reached Tf , data were collected during evolution
times of 3 × 104. Memory effects were also investigated by preparing a sample in the ‘all-
trans’ fully extended conformation and isothermally annealing it at Tf = 9. The all-trans
conformation was monitored after the initial preparation for 3 × 104 time units. For all the
thermal histories the final crystalline state was found to be independent of the thermal history
and, more specifically, to correspond to the global minimum of the FEL [24] in agreement
with previous results on shorter chains at the same Tf = 9 [14, 15].

3. Results and discussion

Figure 1 shows one conformation of the crystalline state. It is a well defined lamella with
two small-sized caps where the loops connecting the stems are localized. The stems have
approximately equal length. Below, it will be seen that they are arranged into a regular,
hexagonal pattern and their number µ is well defined (µ = 10). The inertia tensor of the
configurations in the final state at T = 9 was analysed. Having ordered the principal axes
{1, 2, 3} according to the magnitude of the corresponding eigenvalue, the average values of the
three eigenvalues I1, I2 and I3 are 〈I1〉 = 10 097±58, 〈I2〉 = 9885±51 and 〈I3〉 = 1148±11.
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Figure 1. Wire-frame view of one conformation of the single-molecule crystal. Note the short
loops connecting the stems.

Since 〈I1〉 � 〈I2〉 	 〈I3〉, the ellipsoid of inertia of the crystal exhibits approximate cylindrical
symmetry around the 3 axis,as may also be qualitatively seen by visual inspection (see figure 1).

The present model of PE exhibits a local stiffness of the chain over a length scale which
is expressed by the Kuhn segment length �k [1, 2]. The stiffness is apparent in the caps of the
crystal where bendings are not smooth but, rather, series of straight sections, see figure 1. One
estimates �k = R2

ee/L ∼= 1.2, corresponding to segments with about four beads, where R2
ee

and L are respectively the mean squared end-to-end distance in the disordered state and the
contour length of the polymer. Therefore, the polymer is sketched as a succession of about
Nk = 125 rigid segments.

3.1. Longitudinal monomer distribution: small caps

In order to analyse the crystal structure one defines the monomer distribution function ρ(r) as

ρ(r) = 1

N

N∑
i=1

〈δ(r − r(cm)

i )〉 (7)

where r(cm)

i is the position of the i th bead with respect to the centre of mass of the chain and
the brackets denote a suitable average. In particular, one defines the quantity

N‖(x3) = Nd
∫

ρ(x1, x2, x3) dx1 dx2 (8)

where d ≡ r0 sin(θ0/2) = 0.31 is the distance along the chain backbone between two adjacent
beads of the fully extended chain and xk is the projection of r along the kth principal axis. The
quantity N‖(z)denotes the average number of intersections of the chain with the plane at x3 = z,
namely a plane perpendicular to the approximate cylindrical symmetry 3 axis. Figure 2 plots
the quantity N‖(z) for all the thermal histories. It is apparent that the dependence of N‖(z)
on the thermal history is negligible. In particular, this holds true for the number of stems
µ = N‖(0) = 10.

Three different regions are seen in figure 2:

• the central region, |z| � Lc/2 with Lc = 8, where N‖ � 10;
• the transition region, Lc/2 � |z| � Lc/2 + 2, where the average orientation of the stems

departs from the 3 axis;
• the end region, |z| � Lc/2 + 2, where the stems join each other by forming loops.

Figure 2 shows that the shape of N‖(z) is very close to the ideal one corresponding to ten
parallel, all-trans stems of 50 monomers each. The comparison makes more apparent both the
order in the final state and the small size of the two crystal caps. In fact, the longitudinal size
of the loops, �z ∼ 3, is fairly smaller than the crystal length 2Lc = 16. Notice that, since
I3 � I⊥ with I⊥ = (I1 + I2)/2 � 9990, the folded chain may be sketched as a rigid rod with
length 2L, mass N and negligible thickness. The approximation yields L = √

3I⊥/N � 7.74,
to be compared with Lc ∼ 8, as drawn from figure 2.
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Figure 2. The number of intersections of the chain in the crystalline state with the plane at 3 = z,
N‖(z). The plane is perpendicular to the approximate cylindrical symmetry axis x3. The curves
refer to the different thermal histories. The dashed line is the distribution corresponding to the ideal
case of ten parallel and fully extended stems with fifty monomers each. The number of stems µ is
equal to N‖(0) = 10. Note the steep decrease at the end regions evidencing the small size of the
loops connecting the stems.

3.2. Transverse monomer distribution: surface mobility

In order to study the monomer distribution in planes perpendicular to the 3 axis one defines

ρ⊥,centr(x⊥) =
∫ Lc/2

−Lc/2
ρ(x⊥, z) dz (9)

ρ⊥,trans(x⊥) =
∫ Lc/2+2

Lc/2
[ρ(x⊥, z) + ρ(x⊥,−z)] dz (10)

ρ⊥,term(x⊥) =
∫ ∞

Lc/2+2
[ρ(x⊥, z) + ρ(x⊥,−z)] dz (11)

where x⊥ = x11 + x22 denotes the position vector in the transverse plane. ρ⊥,centr(x⊥),
ρ⊥,trans(x⊥) and ρ⊥,term(x⊥) are the transverse monomer distributions in the central, transition
and end regions, respectively. Figure 3 shows the topography of the crystal structure. The
ten stems of the crystalline nucleus arrange themselves into an hexagonal structure (top plot).
Noticeably, there is virtually no order on the crystal surface. Moving to the caps of the
crystal structure the amount of order decreases. The transition region (centre plot) still retains
a partially ordered structure, visible in the two central stems, whereas the remaining eight
external stems become more mobile. In the end regions (bottom plot), where the loops
connecting the stems are located, any ordered structure is lost. The presence of a disordered
‘corona’ surrounding the ordered fraction of the nucleus has been noted by Monte Carlo
simulations [17]. In the present case the direct inspection of several snapshots shows that
the crystal surface is highly mobile and includes the chain ends, the so-called cilia, which
are excluded from the crystal interior. The confinement of the cilia on the surface avoids the
impairment of lattice perfection and agrees with previous experimental findings [3].

4. Analytic model of the FEL global minimum

The experimental evidence suggests that long alkanes fold in integral reciprocals of the
extended chain length. In particular, this implies that large portions of the chain are mostly
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Figure 3. Topographic view of the crystal state via the transverse distributions ρ⊥,centr (top),
ρ⊥,trans (centre) and ρ⊥,term (bottom) (equations (9)–(11)). Note the absence of ordered structures
on the crystal surface and the two caps.
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contributing to the straight stems, i.e. the size of the loops connecting different stems is short [3].
In our simulations, this is apparent from selected configurations (figure 1) as well as from the
analysis of the longitudinal monomer distribution (figure 2). The average length of the loops
�loop is relatively small and involves a short sequence of Kuhn segments, �loop/�k ∼ 4 [24].
Based on these remarks, a very simple model which incorporates the above feature and accounts
for the existence of equilibrium folded structures has been developed.

A crystallized chain of Nk Kuhn segments is pictured as formed by a nucleus with µ

stems, µ − 1 loops and the two cilia. When a segment is included in one stem of the nucleus
the energy gain is ε > 0 in units of kT . The lateral surface free-energy contribution per unit
area is σ ′ in units of kT . If m denotes the average number of segments per stem, the overall
free energy Fm,µ of the nucleus is written as

Fm,µ

kT
= −µmε + σ

√
µm − ln Wm,µ (12)

with σ = ασ ′r2
0 , α being a numerical factor. Wm,µ denotes the number of distinct ways to

arrange the Nk segments in µ stems, each of m segments, µ−1 loops and two tails. To evaluate
Wm,µ one assumes that each loop has only one conformation. This roughly accounts for the
both the expected stiffness of the short loops and their mutual steric constraints. We factorize
Wm,µ as

Wm,µ =
(

Nk − µm + µ

µ

)
× pµ−1. (13)

The binomial coefficient enumerates the distinct ways to get a one-dimensional arrangement of
(Nk − µm) segments separated by µ walls. The second term is a weighting factor accounting
for the entropic limitations to bend the linear arrangement and form a crystalline nucleus with
µ − 1 loops. One expects that conformations with a large number of loops are inhibited by
jams occurring in the compact caps of the nucleus (see figure 1). Owing to the roughness of
the present model p is left as an adjustable parameter.

Equation (13) sets the entropic contribution ln Wm,µ to the free energy. Small variants,
e.g. by neglecting the two cilia, do not improve the model appreciably. Muthukumar proved
that the entropy role is crucial to enforce the minimum of Fm,µ and estimated Wm,µ by resorting
to a Gaussian model of the loops and to a field-theoretic approach [15]. Although the Gaussian
model is expected to work nicely for long loops, it may overestimate Wm,µ in the case of short
loops. The present model cuts the entropy due to the loop conformations, i.e. the so called
entropy of disorientation, and limits the entropy to the mixing of the µ stems of the crystalline
nucleus (with m segments each) along the polymer chain. The resulting free energy has one
adjustable parameter less than that of [15].

Representative plots of the free-energy landscape (FEL) and the contour plot of the
minimum are shown in figures 4 and 5, respectively. Qualitatively similar plots were also
presented in [15]. The FEL is limited to the region µm < Nk where segments are available
to form both the loops and the two cilia. At µm � Nk a steep ridge is found, due to the small
entropy of conformations with very short loops/cilia. Figure 5 shows the contour plots of the
FEL of figure 4. The minimum is located at m∗ = 9.68, µ∗ = 9.94. This must be compared
with µ = 10 from the MD results. If Lstem is the stem length, the average number of Kuhn
segments per stem is m = Lstem/�k. From figure 2 one estimates Lstem = 2z∗, where z∗ is
the positive non-trivial solution of the equation N‖(z) = 10, i.e. the intercept with z �= 0
between the distributions N‖(z) from the simulation and that from the ideal case of ten fully
stretched stems. One finds m = 10 with Lstem = 12, to be compared with m∗ = 9.68 of the
model. Finally, one notes that the coordinates of the FEL minimum correspond to an average
number of segments located in each loop equal to (Nk − µ∗m∗)/(µ∗ − 1) = 3.22. The value
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Figure 4. The free-energy landscape (FEL) of the model. m is the number of Kuhn segments
belonging to one of the µ stems. Nk = 125, ε = 0.6, σ = 0.97, p = 0.06.
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Figure 5. Contour plot of the FEL of figure 4. The minimum is located at m∗ = 9.68, µ∗ = 9.94.

is consistent with the basic assumption of the model, i.e. short loops, and compares well with
the value from the MD simulations, about 3–4 [24].

Figure 6 is a parametric plot of the number of stems µ∗(ε, σ ) and the segments per stem,
m∗(ε, σ ) of the FEL minimum with p = 0.06 for different ε and σ values. On increasing the
surface tension σ , the minimum moves from very prolate crystals (few and very long stems) to
more spherical crystals (more and shorter stems) to minimize the exposed surface by keeping
the total volume constant (Nk constant). The presence of a maximum number of stems for
a given ε must be considered with caution, in that it corresponds to a very small number of
segments per stem and a very large number of segments located in the loops, therefore pushing
the model to its limits.

The existence of a minimum of Fm,µ relies on the limitations of having conformations
with a large number of loops. This is understood by noting the relation Fm,µ = Fm,µ(p =
0) − (µ − 1) ln p (p < 1) which makes explicit the entropic penalty for conformations with a
large number of stems µ. In fact, if the entropy penalty is removed by setting p = 1, Fm,µ with
the same parameters as figure 4 has no minimum (data not shown). At constant p, the minimum
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Figure 6. Plot of the coordinates µ∗, m∗ of the FEL minimum with Nk = 125, p = 0.06 for
different ε and σ values. For ε = 0.4, 0.6 and 0.8, σ is in the intervals 0.5 � σ � 0.95,
0.6 � σ � 1.655 and 0.8 � σ � 2.4, respectively. m∗ always decreases on increasing σ .

disappears at high temperatures (small ε and σ ). As an example, for Nk = 125, p = 0.06 and
σ/ε = 0.22, 2.2 and 3 the minimum disappears for ε < 0.062, 0.2953 and 0.8275, respectively.
This shows that increasing σ enforces higher energy gain ε to make the crystal nucleus stable.
Note the approximate scaling σ/ε2.

5. Conclusion

The paper has presented numerical results from extensive MD simulations of the crystallization
process of a single PE chain with N = 500 monomers. The chain, after suitable equilibration at
high temperature, is cooled at the final temperature Tf = 9 by quenches involving intermediate
annealing steps or not. The chain is also isothermally annealed at Tf after initial preparation
in the fully stretched ‘all-trans’ configuration. No dependence on the thermal history was
observed at late stages of the crystallization process, which eventually yields a well defined
equilibrated lamella with ten stems of approximately equal length, arranged into a regular,
hexagonal pattern. The study of the microscopic organization of the lamella evidenced that
the two caps are rather flat, i.e. the loops connecting the stems are short. It is also seen that the
chain ends, the so-called cilia, are localized on the surface of the lamella, in agreement with
the experiments [3], and that structural fluctuations take place on the lamella surface, as noted
by recent Monte Carlo simulations [17]. Motivated by the MD finding that the lamella is in
the equilibrium state and that the caps of the lamella are rather small, an analytic model of the
global minimum of the FEL, based on the assumption that the entropic contribution is mainly
due to the combinatorics of the stems and of the loops, i.e. neglecting any conformational
contribution, is developed. It provides for the first time a quantitative explanation of the MD
results on the equilibrium geometry of the single-chain crystals.

Financial support from MIUR within the PRIN project ‘Dynamics and thermodynamics
in out-of-equilibrium materials: structural glasses, gels, polymeric materials’ is gratefully
acknowledged.
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